A Note on Möbius Functions of Upho Posets

نویسندگان

چکیده

A poset is called upper homogeneous (or "upho") if every principal order filter of the isomorphic to whole poset. We observe that rank and characteristic generating functions upho posets are multiplicative inverses one another.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posets with maximal Möbius function

The absolute value of the Möbius function of a bounded poset P with n + 2 elements satisfies |μ(P )| ≤ max r≥0 max p1+...+pr=n pi≥1 r ∏

متن کامل

On the Möbius Function and Topology of General Pattern Posets

We introduce a formal definition of a pattern poset which encompasses several previously studied posets in the literature. Using this definition we present some general results on the Möbius function and topology of such pattern posets. We prove our results using a poset fibration based on the embeddings of the poset, where embeddings are representations of occurrences. We show that the Möbius ...

متن کامل

A Note on Blockers in Posets

The blocker A∗ of an antichain A in a finite poset P is the set of elements minimal with the property of having with each member of A a common predecessor. The following is done: (1) The posets P for which A∗∗ = A for all antichains are characterized. (2) The blocker A∗ of a symmetric antichain in the partition lattice is characterized. (3) Connections with the question of finding minimal size ...

متن کامل

Möbius function of semigroup posets through Hilbert series

In this paper, we investigate the Möbius function μS associated to a (locally finite) poset arising from a semigroup S of Zm. We introduce and develop a new approach to study μS by using the Hilbert series of S. The latter enables us to provide formulas for μS when S belongs to certain families of semigroups. Finally, a characterization for a locally finite poset to be isomorphic to a semigroup...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2022

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/11084